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Abstract—This paper considers various numerical functions that determine the degree of similarity between
two finite sequences. These similarity measures are based on the concept of embedding for sequences, which
we define here. A special case of this embedding is a subsequence. Other cases additionally require equal dis-
tances between adjacent symbols of a subsequence in both sequences. This is a generalization of the concept
of the substring with unit distances. Moreover, equality of distances from the beginning of the sequences to
the first embedded symbol or from the last embedded symbol to the end of the sequences may be required.
In addition to the last two cases, an embedding can occur in the sequence more than once. In the literature,
functions such as the number of common embeddings or the number of pairs of occurrences of embeddings
in a sequence are used. We introduce three additional functions: the sum of lengths of common embeddings,
the sum of the minimum numbers of occurrences of a common embedding in both sequences, and the sim-
ilarity function based on the longest common embedding. In total, we consider 20 numerical functions; for
17 of these functions, algorithms (including new ones) of polynomial complexity are proposed; for two func-
tions, algorithms of exponential complexity with a reduced exponent are proposed. In Conclusions, we
briefly compare these embeddings and functions.

Keywords: sequence analysis, common subsequences, longest and maximal common subsequences, canoni-
cal embedding, matching joint embeddings, algorithms for subsequence and embeddings combinatorics,
similarity axioms
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1. INTRODUCTION

Sequence analysis is widely used in social, manage-
ment, political, demographic, and psychological sci-
ences, as well as in chemistry, bioinformatics, and text
processing. In recent decades, many papers devoted to
this problem have been published [1–6]. Various met-
rics and measures of similarity for sequences have been
used [4, 5].

In this paper, we consider various numerical func-
tions that determine the degree of similarity between
two finite sequences. These similarity measures are
based on the concept of embedding for sequences,
which we define below. A special case of this embed-
ding is a subsequence. Other cases additionally take
into account distances between symbols of a subse-
quence in both sequences. For instance, sequences
“METRICA” and “MOROCCO” have the longest
common subsequence “MRC”, taking into account
the distances between symbols “R-C”, the distances
between the symbols and from the last embedded sym-
bol to the end of the sequence “C-”, and the distances
between the symbols and from the beginning of the

sequence to the first symbol of the “M—C” embed-
ding.

The concept of embedding is introduced using an
empty symbol, which does not belong to the alphabet
of the sequences. In total, embeddings of five types are
introduced: E-embedding is obtained by replacing
some symbols with an empty symbol, L-embedding is
obtained from E-embedding by removing the empty
prefix, R-embedding is obtained from E-embedding
by removing the empty postfix, O-embedding is
obtained from E-embedding by removing the empty
prefix and empty postfix, and A-embedding is
obtained from E-embedding by removing all empty
symbols, which coincides with the concept of a subse-
quence. The identifiers of the embeddings are derived
from the corresponding English words: E is Empty
symbol, followed by an indication of a place where
there are no empty symbols; L is on the Left; R is on
the Right; O is Outside (i.e. on the left and right); and
A is Anywhere (i.e., there are no empty symbols any-
where).

Each embedding can have multiple occurrences in
a sequence, i.e., several E-embeddings, from which a
given embedding is obtained by removing the prefix,
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postfix, prefix and postfix, or all empty symbols. For
instance, subsequence “MRC” occurs once in
sequence “METRICA” (the corresponding E-embed-
ding is “M--R-C-”) and twice in sequence
“MOROCCO” (the corresponding E-embeddings are
“M-R-C--” and “M-R--C-”). For embeddings that
can contain empty symbols, the concept of μ-length is
defined as the number of non-empty symbols (for A-
embedding, it coincides with the length of the subse-
quence).

For each of four embedding types (L, R, O and A),
five functions are defined: (0) the number of common
embeddings, (1) the sum of μ-lengths of common
embeddings, (2) the sum of the minimum numbers of
occurrences of common embeddings in given
sequences, (3) the sum of products of the numbers of
occurrences of common embeddings in given
sequences, and (4) similarity measure based on the
longest common subsequence (lcs).

Some of these 20 functions are well known, e.g.,
the number of common subsequences (the number of
common A-embeddings) or the sum of products of the
numbers of occurrences of common subsequences in
given sequences (the sum of products of the numbers
of E-embeddings of common A-embeddings in given
sequences) [3]. The other functions, especially those
that take into account distances between symbols, are
introduced in this paper.

This paper is organized as follows. Section 2 intro-
duces the basic concepts and notation. Section 3 con-
siders an optimization common to embeddings of all
types: replacing the symbols that occur only in one of
two sequences with an empty symbol. Sections 4–7
discuss embeddings of four types (L, R, O, and A); for
each type of embeddings, algorithms for evaluating
five functions 0, 1, 2, 3, and 4 are considered. In Con-
clusions, the results are summarized and some direc-
tions for further research are outlined.

2. DEFINITIONS AND NOTATION

For integers i and j, we denote i..j = {i, i + 1, …, j} if
i ≤ j and i..j = ∅ if i > j.

A finite sequence in alphabet H of length m ≥ 0 is
an injection of set 1..m into set H: 1..m → H. The set of
finite sequences in alphabet H is denoted by H*.
An empty sequence (of zero length, an empty injec-
tion) is denoted by (). For a non-empty finite
sequence x, its ith element (i ∈ 1..|x|) is denoted by xi =
x(i). Segment xi, xi + 1, …, xj for 1 ≤ i ≤ j ≤ |x| is denoted
by x[i..j]. For i > j, we define x[i..j] = (). A prefix is
denoted by x[j] = x[1..j], and an empty prefix (of zero
length) is also defined for an empty sequence ()[0] = ().
A finite sequence of k ≥ 0 repetitions of symbol h ∈ H
is denoted by hk: |hk| = k & ∀ i = 1..|k| . Instead of
h1, we simply write h.

=k
ih h
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Concatenation xy of finite sequences x and y is
defined as follows: |xy| = |x| + |y|, ∀ i ∈ 1..|x| (xy)i = xi
and ∀ j ∈ 1..|y| (xy)|x| + j = yj. We also define the concat-
enation of a pair (X, Y) of finite sets of finite sequences
with a pair (z, t) of finite sequences: (X, Y)(z, t) = {(xz,
yt) : (x, y) ∈ (X, Y)}. It is assumed that the concatena-
tion has priority over operations on sets (union, inter-
section, and difference).

The composition of functions f and g is denoted by fg.
Let us introduce an empty symbol ε ∉ H and denote

Hε = H ∪ {ε}.
The set of finite sequences in alphabet Hε is

denoted by
• L(H) = {  ∈  : | | > 0 ⇒  ≠ ε} if the

sequences do not begin with an empty symbol;

• R(H) = {  ∈  : | | > 0 ⇒  ≠ ε} if the
sequences do not end with an empty symbol;

•  if

the sequences do not begin and end with empty sym-
bols.

Let us introduce the following operations for
removing empty symbols from a finite sequence in Hε:

• removing the prefix of empty symbols λ:  →
L(H) is defined by the condition

• removing the postfix of empty symbols ρ:  →
R(H) is defined by the condition

• removing all empty symbols μ:  → H* is defined
by the condition

For sequence x ∈ ,
• E-embedding is obtained from x by replacing

some symbols with empty symbols;
• L-embedding is obtained from E-embedding by

removing the prefix of empty symbols;
• R-embedding is obtained from E-embedding by

removing the postfix of empty symbols;
• O-embedding is obtained either from E-embed-

ding by removing the prefix and postfix of empty sym-
bols, or from L-embedding by removing the postfix of
empty symbols, or from R-embedding by removing
the prefix of empty symbols;

• A-embedding is obtained from E-, L-, R-, or O-
embedding by removing empty symbols.

For x ∈ H*, the concept of A-embedding coincides
with the concept of a subsequence, while E-embed-
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TWENTY SIMILARITY FUNCTIONS 375
ding  corresponds to the occurrence of subsequence
 in x.

Let us denote the following sets of embeddings in
sequence x ∈ H*:

• the set of E-embeddings in x is

• the set of L-embeddings in x is

• the set of R-embeddings in x is

• the set of O-embeddings in x is

• the set of A-embeddings in x is

For a sequence x in alphabet , we introduce the
concept of μ-length of x as the number of non-empty
symbols in x, which is obviously equal to |μ(x)|. For x
∈ H*, its μ-length is equal to its actual length.

For sequences x ∈ H*, we denote
• the set of E-embeddings in x for L-embedding by

u ∈ L(x): l(u, x) = {  ∈ E(x) : λ( ) = u};
• the set of E-embeddings in x for R-embedding by

u ∈ R(x): r(u, x) = {  ∈ E(x) : ρ( ) = u};
• the set of E-embeddings in x for O-embedding by

u ∈ O(x): o(u, x) = {  ∈ E(x) : λρ( ) = u};
• the set of E-embeddings in x for A-embedding by

u ∈ A(x): a(u, x) = {  ∈ E(x) : μ( ) = u}.
For sequences x ∈ H* and y ∈ H*, we denote
• the set of pairs of E-embeddings for common

L-embeddings by

• the set of pairs of E-embeddings for common
R-embeddings by

• the set of pairs of E-embeddings for common
O-embeddings by

• the set of pairs of E-embeddings for common
A-embeddings by

For sequences x ∈ H* and y ∈ H*, we denote the
longest (in terms of μ-length)

• common L-embeddings by lcL(x, y) = max{μ(u) :
u ∈ L(x) ∩ L(y)};

• common R-embeddings by lcR(x, y) = max{μ(u) :
u ∈ R(x) ∩ R(y)};

• common O-embeddings by lcO(x, y) = max{μ(u) :
u ∈ O(x) ∩ O(y)};

v
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• common A-embeddings by lcA(x, y) = max{|u| :
u ∈ A(x) ∩ A(y)}.

It is natural to regard the maximum μ-length of a
common embedding as another similarity function for
sequences x and y: lcI(x, y) for I ∈ {L, R, O, A}. In accor-
dance with this criterion, sequence x is most “similar” to
itself because it is the longest I-embedding in itself: lcI(x,
x) = max{μ(u) : u ∈ I(x)} = |x| ≥ max{μ(u) : u ∈ I(x) ∩
I(y)} = lcI(x, y).

We focus on functions of sequences x ∈ H* and y ∈ H*
that are defined in Table 1.

Note that, for I ∈ {L, R, O, A} and j ∈ 0..4, Ij(x, y) =
Ij(y, x). If j ≠ 1, then Ij(x, ()) = Ij((), y) = 1; I1(x, ()) =
I1((), y) = 0.

For non-empty sequence x ∈ H*,
• the left-most E-embedding in x for L-embed-

ding is denoted by u ∈ L(x): ll(u, x) =  if  ∈ l(u, x)
and ∀ w ∈ l(u, x)\{ } w(min{i ∈ 1..|x| : wi ≠ }) = ε;

• the right-most E-embedding in x for L-embed-
ding is denoted by u ∈ O(x): lr(u, x) =  if  ∈ l(u, x)
and ∀ w ∈ l(u, x)\{ } w(max{i ∈ 1..|x| : wi ≠ }) = ε;

• the left-most E-embedding in x for R-embedding
is denoted by u ∈ R(x): rl(u, x) =  if  ∈ r(u, x) and
∀ w ∈ r(u, x)\{ } w(min{i ∈ 1..|x| : wi ≠ }) = ε;

• the right-most E-embedding in x for R-embed-
ding is denoted by u ∈ O(x): rr(u, x) =  if  ∈ r(u, x)
and ∀ w ∈ r(u, x)\{ } w(max{i ∈ 1..|x| : wi ≠ }) = ε;

• the left-most E-embedding in x for O-embed-
ding is denoted by u ∈ O(x): ol(u, x) =  if  ∈ o(u, x)
and ∀ w ∈ o(u, x)\{ } w(min{i ∈ 1..|x| : wi ≠ }) = ε;

• the right-most E-embedding in x for O-embed-
ding is denoted by u ∈ O(x): or(u, x) =  if  ∈ o(u, x)
and ∀ w ∈ o(u, x)\{ } w(max{i ∈ 1..|x| : wi ≠ }) = ε;

• the left-most E-embedding in x for A-embedding
is denoted by u ∈ A(x): al(u, x) =  if  ∈ a(u, x) and
∀ w ∈ a(u, x)\{ } w(min{i ∈ 1..|x| : wi ≠ }) = ε;

• the right-most E-embedding in x for A-embed-
ding is denoted by u ∈ A(x): ar(u, x) =  if v ∈ a(u, x)
and ∀ w ∈ a(u, x)\{ } w(max{i ∈ 1..|x| : wi ≠ }) = ε.

In the literature, the left-most E-embeddings of
common embeddings are also called (for subse-
quences) canonical embeddings [3].

For non-empty sequences x ∈ H* and y ∈ H*, we
denote

• the set of pairs of left-most E-embeddings for
common L-embeddings by

• the set of pairs of right-most E-embeddings for
common L-embeddings by
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Table 1. Functions for common embeddings of two sequences x and y

Embedding

Function

Number of common 
embeddings

Sum of μ-lengths of 
common 

embeddings

Sum of minimum 
numbers of 

E-embeddings in 
common embeddings

Sum of products 
of numbers of

E-embeddings in 
common 

embeddings

μ-Longest 
common 

embedding

0 1 2 3 4

L L0(x, y) = |L(x) ∩ L(y)| L1(x, y) = Σ {|μ(u)| : 
u ∈ L(x) ∩ L(y)}

L2(x, y) = Σ {min{|l(u, 
x)|, |l(u, y)|} : 

u ∈ L(x) ∩ L(y)}

L3(x, y) = |L(x, y)| L4(x, y) = lcL(x, y)

R R0(x, y) = |R(x) ∩ R(y)| R1(x, y) = Σ {|μ(u)| :
u ∈ R(x) ∩ R(y)}

R2(x, y) = Σ {min{|r(u, 
x)|, |r(u, y)|} : 

u ∈ R(x) ∩ R(y)}

R3(x, y) = |R(x, y)| R4(x, y) = lcR(x, y)

O O0(x, y) = |O(x) ∩ O(y)| O1(x, y) = Σ {|μ(u)| : 
u ∈ O(x) ∩ O(y)}

O2(x, y) = Σ {min{|o(u, 
x)|, |o(u, y)|} :

u ∈ O(x) ∩ O(y)}

O3(x, y) = |O(x, y)| O4(x, y) = lcO(x, y)

A A0(x, y) = |A(x) ∩ A(y)| A1(x, y) = Σ {|u| :
u ∈ A(x) ∩ A(y)}

A2(x, y) = Σ {min{|a(u, 
x)|, |a(u, y)|} : 

u ∈ A(x) ∩ A(y)}

A3(x, y) = |A(x, y)| A4(x, y) = lcA(x, y)
• the set of pairs of left-most E-embeddings for
common R-embeddings by

• the set of pairs of right-most E-embeddings for
common R-embeddings by

• the set of pairs of left-most E-embeddings for
common O-embeddings by

• the set of pairs of right-most E-embeddings for
common O-embeddings by

• the set of pairs of left-most E-embeddings for
common A-embeddings by

• the set of pairs of right-most E-embeddings for
common A-embeddings by

Note that |Ol(x, y)| = |Or(x, y)| = |O(x) ∩ O(y)| and
|Al(x, y)| = |Ar(x, y)| = |A(x) ∩ A(y)|.

Below, x and y denote two non-empty sequences in
alphabet H with lengths m = |x| and n = |y|. It is
assumed that m ≤ n.

= ∈ ∩( ) {( ( ) ( )), , , , : ( ) ( )};l l lR x y r u x r u y u R Rx y

= ∈ ∩( ) {( ( ) ( )), , , , : ( ) ( )};r r rR x y r u x r u y u R Rx y

= ∈ ∩( ) {( ( ) ( )), , , , : ( ) ( )};l l lO x y o u x o u y u O Ox y

= ∈ ∩( ) {( ( ) ( )), , , , : ( ) ( )};r r rO x y o u x o u y u O Ox y

= ∈ ∩( ) {( ( ) ( )), , , , : ( ) ( )};l l lA x y a u x a u y u A Ax y

= ∈ ∩( ) {( ( ) ( )), , , , : ( ) ( )}.r r rA x y a u x a u y u A Ax y
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3. REPLACEMENT OF NON-COMMON 
SYMBOLS WITH EMPTY SYMBOLS

A general optimization for evaluation of all func-
tions for all embeddings is to replace non-common
symbols with empty symbols: for i ∈ 1..m, we define

= xi if xi ∈ Im y and  = εi if xi ∉ Im y; y^ is defined
similarly. This replacement is carried out in O(mn)
time. In the case of A-embeddings, instead of replac-
ing a non-common symbol with an empty symbol, we
can simply remove the non-common symbol. The
algorithms described below can be applied upon per-
forming this replacement (removal for A-embed-
dings).

4. A-EMBEDDINGS (SUBSEQUENCES)
4.1. Number of Common A-Embeddings

Here, we prove a theorem similar to Lemma 6 from
[3], but we prove it differently using different defini-
tions and notation.

For non-empty sequence z ∈ H* and symbol h ∈ H,
we define the maximum index by which symbol h is
found in sequence z (or 0 if h is not included in z):

p(z, h) = max{i ∈ 1..|z|: zi = h} if h ∈ Im z; p(z, h) = 0
if h ∉ Im z.

We denote k = p(x[m – 1], xm} and l = p(y, xm}.
Theorem 1.
A0(x, y) = A0(x[m – 1], y) if xm ∉ Im y;
A0(x, y) = A0(x[m – 1], y) + A0(x[m – 1], y[l – 1])

if xm ∈ Im y and xm ∉ Im x[m – 1];

∧
ix ∧

ix
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TWENTY SIMILARITY FUNCTIONS 377
A0(x, y) = A0(x[m – 1], y) + A0(x[m – 1], y[l – 1]) –
A0(x[k – 1], y[l – 1]) if xm ∈ Im y and xm ∈ Im x[m – 1].

Proof.
We consider sets of pairs (er(u, x), er(u, y)) of right-

most E-embeddings for common A-embedding u of
sequences x and y. Pairs of sequences of lengths m and
n are denoted as follows:

E = Ar(x, y);
Em = Ar(x[m – 1], y)(ε, ());
Eml = Ar(x[m – 1], y[l – 1])(xm, xmεn – l) if xm ∈ Im y;

otherwise, Eml = ∅;
Ekl = Ar(x[k – 1], y[l – 1])(xmεm – k – 1xm, xmεn – l) if

xm ∈ Im y and xm ∈ Im x[m – 1]; otherwise, Ekl = ∅.
Since A0(x', y') = |A(x') ∩ A(y')| = |Ar(x', y')| for any

x' and y', the statement of the theorem can be rewritten
as follows:

|E| = |Em| if xm ∉ Im y;
|E| = |Em| + |Eml| if xm ∈ Im y and xm ∉ Im x[m – 1];
|E| = |Em| + |Eml| – |Ekl| if xm ∈ Im y and xm ∈ Im x[m – 1].
With E-embeddings from set Em having the form

(…ε, …) and sets Eml, Ekl either being empty or
E-embeddings from them having the form (…xm, …),
we have Em ∩ Eml = Em ∩ Ekl = ∅. For m – 1 ≥ k – 1,
we have Eml ⊇ Ekl.

Let us consider the case where xm ∉ Im y. Since
xm ∉ Im y, the transition from sequence x[m – 1] to
sequence x = x[m – 1]xm does not add new common
A-embeddings. That is why E = Em. Hence, |E| = |Em|,
which was to be proved in this case.

Let us consider the case where xm ∈ Im y and xm ∉
Im x[m – 1]. Since xm ∈ Im y, the transition from
sequence x[m – 1] to sequence x = x[m – 1]xm can add
new common A-embeddings; these common A-embed-
dings must end with xm. However, these common
A-embeddings were absent in x[m – 1] and y before
because xm ∉ Im x[m – 1]. Note that, for this new
common A-embedding u in its right-most E-embed-
dings in x and y, the last non-empty symbol is xm by
indices m and l, respectively, i.e., er(u, x)m = er(u, y)l =
xm. We have E = Em ∪ Eml. Since Em ∩ Eml = ∅, we
have |E| = |Em| + |Eml|, which was to be proved in this
case.

Let us consider the case where xm ∈ Im y and xm ∈
Im x[m – 1]. Since xm ∈ Im y, the transition from
sequence x[m – 1] to sequence x = x[m – 1]xm can add
new common A-embedding u; however, they are new
only if there were no such A-embeddings in x[m – 1]
and y before. These new common A-embeddings must
end with xm. Note that, if this common A-embedding
u was present before, then, in its right-most E-embed-
dings in x[m – 1] and y, the last non-empty symbol is
xm by indices k and l, respectively, i.e., er(u, x[m – 1])k =
er(u, y)l = xm. In any case, in right-most E-embeddings
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 
u in x and y, the last non-empty symbol is xm by indices
m and l, respectively, i.e., er(u, x)m = er(u, y)l = xm.
We have E = Em ∪ (Eml\Ekl). With Em ∩ Eml = Em ∩ Ekl =
∅, we have Em ∩ (Eml\Ekl) = ∅ and, therefore, |E| =
|Em| + |Eml\Ekl|. With Eml ⊇ Ekl, we have |Eml\Ekl| = |Eml| –
|Ekl|. Hence, |E| = |Em| + |Eml| – |Ekl|, which was to be
proved.

□
Theorem 1 defines an algorithm for evaluating

A0(x, y). The number of algorithm steps is O(mn),
which is determined by the number of functions of
form A0(x[m – i], y[n – j]), where i ∈ 0..m and j ∈ 0..n,
provided that each function is evaluated at most once
(after which its value is saved). At each step, the check
of conditions xm – i ∈ Im y[n – j] and xm – i ∈ Im x[m –
i – 1] has complexity O(m + n), while the other com-
putations have complexity O(1). The complexity of
the algorithm is O(m2n + mn2), which corresponds to
O(mn2) for m ≤ n.

4.2. Sum of Lengths of Common A-Embeddings
Theorem 2.
A1(x, y) = A1(x[m – 1], y) if xm ∉ Im y;
A1(x, y) = A1(x[m – 1], y) + A1(x[m – 1], y[l – 1]) +

A0(x[m – 1], y[l – 1]) if xm ∈ Im y and xm ∉ Im x[m – 1];
A1(x, y) = A1(x[m – 1], y) + A1(x[m – 1], y[l – 1]) +

A0(x[m – 1], y[l – 1]) – A1(x[k – 1], y[l – 1]) – A0(x[k –
1], y[l – 1]) if xm ∈ Im y and xm ∈ Im x[m – 1].

Proof.
The proof is similar to that of Theorem 1. We use

the same notation:
E = Ar(x, y);
Em = Ar(x[m – 1], y)(ε, ());
Eml = Ar(x[m – 1], y[l – 1])(xm, xmεn –l) if xm ∈ Im y;

otherwise, Eml = ∅;
Ekl = Ar(x[k – 1], y[l – 1])(xmεm – k – 1xm, xmεn – l) if

xm ∈ Im y and xm ∈ Im x[m – 1]; otherwise, Ekl = ∅.
We have Em ∩ Eml = Em ∩ Ekl = ∅ and Eml ⊇ Ekl.
In addition, we have A0(x[m – 1], y[l – 1]) = |Eml|

and |A0(x[k – 1], y[l – 1])| = |Ekl|.
Let us denote
S = Σ {|u| : u ∈ A(x) ∩ A(y) & (er(u, x), er(u, y)) ∈ E};
Sm = Σ {|u| : u ∈ A(x) ∩ A(y) & (er(u, x), er(u, y)) ∈ Em};
Sml = Σ {|u| : u ∈ A(x) ∩ A(y) & (er(u, x), er(u, y)) ∈

Eml} if xm ∈ Im y; otherwise Eml = ∅;
Skl = Σ {|u| : u ∈ A(x) ∩ A(y) & (er(u, x), er(u, y)) ∈

Ekl} if xm ∈ Im y and xm ∈ Im x[m – 1]; otherwise Ekl = ∅.
The length of common A-embedding u is equal to

the number of non-empty symbols in each of its
E-embeddings, including the right-most E-embed-
ding. Therefore, in this notation, the statement of the
theorem can be rewritten as follows:
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S = Sm if xm ∉ Im y;
S = Sm + Sml + |Eml| if xm ∈ Im y and xm ∉ Im x[m – 1];
S = Sm + Sml + |Eml| – Skl – |Ekl| if xm ∈ Im y and xm ∈

Im x[m – 1].
When passing from sequence x[m – 1] to sequence

x = x[m – 1]xm, the number of non-empty symbols in
the right-most E-embedding in x of common A-embed-
ding u does not change if it includes, by index m, an
empty symbol er(u, x)m = ε; otherwise, it is incre-
mented by 1 when er(u, x)m = xm.

This implies the following conditions.
In the case where xm ∉ Im y, we have E = Em; for

each (u, ) ∈ Em, we have um = ε; therefore, S = Sm,
which was to be prove in this case.

For xm ∈ Im y and xm ∉ Im x[m – 1], we have E =
Em ∪ Eml and Em ∩ Eml = ∅; for each (u, ) ∈ Em, holds
um = ε; for each (u, ) ∈ Eml, holds um = xm; therefore,
S = Sm + (Sml + |Eml|), which was to be proved in this
case.

For xm ∈ Im y and xm ∈ Im x[m – 1], we have E =
Em ∪ (Eml\Ekl) and Em ∩ Eml = Em ∩ Ekl = ∅; for each
(u, ) ∈ Em, holds um = ε; for each (u, ) ∈ Eml, holds
um = xm; for each (u, ) ∈ Ekl, holds um = xm; therefore,
S = Sm + (Sml + |Eml|) – (Skl + |Ekl|), which was to be
proved in this case.

□
Theorem 2 defines an algorithm for evaluating

A1(x, y); its complexity obviously does not exceed by
an order of magnitude the complexity of the algorithm
for evaluating A0(x, y), i.e., it is O(m2n + mn2), which
corresponds to O(mn2) for m ≤ n.

4.3. Sum of the Minimum Numbers of E-Embeddings 
in Common A-Embeddings

For function A2(x, y), we are not aware of a good
algorithm (except exhaustive search). The only useful
optimization is preliminary removal of non-common
symbols.

4.4. Sum of Products of the Numbers of E-Embeddings 
in Common A-Embeddings

Here, we prove a theorem similar to Theorem 2
from [3]; the difference is that we take into account an
empty subsequence, whereas Theorem 2 from [3] does
not, and use different definitions and notation.

Theorem 3. A3(x, y) = A3(x[m – 1], y) + A3(x, y[n –
1]) – A3(x[m – 1], y[n – 1]) if xm ≠ yn;

A3(x, y) = A3(x[m – 1], y) + A3(x, y[n – 1]) if xm = yn.
Proof.
We denote the following sets of pairs of E-embed-

dings for common A-embeddings as follows:
E = A(x, y),

v

v

v

v v

v
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E00 = A(x[m – 1], y[n-1])(ε, ε) is the pair of last ele-
ments (ε, ε),

E01 = (A(x[m – 1], y])(ε, ()))\E00 is the pair of last
elements (ε, yn),

E10 = (A(x, y[n – 1])((), ε))\E00 is the pair of last
elements (xm, ε),

E11 = E\(E00 ∪ E01 ∪ E10) is the pair of last elements
(xm, yn), since E00 ∪ E01 ∪ E10 contain all pairs of
E-embeddings of common A-embeddings in which
the pair of last elements contains ε.

Obviously, E = E00 ∪ E01 ∪ E10 ∪ E11. Pairs of last
elements of pairs of E-embeddings from different sets
E00, E01, E10, and E11 are different, which is why these
sets are pairwise disjoint. Therefore, |E| = |E00| + |E01| +
|E10| + |E11|, |E00 ∪ E01| = |E00| + |E01|, and |E00 ∪ E10| =
|E00| + |E10|.

With A3(x, y) = |A(x, y)|, in this notation, the state-
ment of the theorem has the following form:

|E| = (|E00| + |E01|) + (|E00| + |E10|) – |E00| = |E00| +
|E01| + |E10| if xm ≠ yn,

|E| = (|E00| + |E01|) + (|E00| + |E10|) = 2|E00| + |E01| +
|E10| if xm = yn.

Let us consider the case where xm ≠ yn. In this case,
E11 = ∅; this implies |E11| = 0 and |E| = |E00| + |E01| +
|E10|, which was to be proved in this case.

Let us consider the case where xm = yn = h. Each

pair of E-embeddings from E11 has form ( ,

), where ( , ) ∈ E00 (sequences u

and  can both be empty). We say that pair ( ,
) corresponds to pair ( , ).

This correspondence is obviously a bijection of sets E11
and E00. Therefore, |E11| = |E00|. Hence, |E| = |E00| + |E01| +
|E10| + |E11| = |E00| + |E01| + |E10| + |E00| = 2|E00| + |E01| +
|E10|, which was to be proved.

□
Theorem 3 defines an algorithm for evaluating

A3(x, y). The number of algorithm steps is O(mn),
which is determined by the number of functions of
form A3(x[m – i], y[n – j]), where i ∈ 0..m and j ∈ 0..n,
provided that each function is evaluated at most once
(after which its value is saved). At each step, the com-
putations have complexity O(1). Thus, the complexity
of the algorithm is O(mn).

4.5. Similarity Function Based 
on the Longest Common A-Embedding

The problem of calculating the length of the longest
common subsequence (lcs) is well known [1]. The
simplest algorithm with complexity O(mn) is based on
the following relations:

lcA(x, y) = lcA(x[m – 1], y[n – 1]) + 1 if xm = yn;

− −ε | | 1m uu h
− −ε 1| |n hv

v
− −ε ε1| |m uu − −ε ε1| |n v

v

v
− −ε | | 1m uu h

− −ε 1| |n hv

v
− −ε ε1| |m uu − −ε ε1| |n v

v
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lcA(x, y) = max{lcA(x, y[n – 1]), lcA(x[m – 1], y)} if
xm ≠ yn.

Thus, function A4(x, y) = lcA(x, y) is evaluated in
O(mn) time.

5. L-EMBEDDINGS
In contrast to A- and O-embeddings, L-embedding

u ∈ L(x) has only one E-embedding  such that λ( ) =
u. Common L-embedding u ∈ L(x) ∩ L(y) has a pair
of E-embeddings in x and y, which can differ only in
the prefix of empty symbols. That is why set l(u, x) is a
singleton, {ll(u, x)} = {lr(u, x)} = l(u, x) and L(x, y) =
Ll(x, y) = Lr(x, y).

By γ(x, y), we denote a sequence z of length m
(recall that |x| = m ≤ n = |y|) that coincides with x and y
in those positions (from right to left) in which x and y
coincide, as well as has empty symbols in the other
positions: |z| = m and ∀ i ∈ 1..m (xm + 1 – i = yn + 1 – i ⇒
zm + 1 – i = xm + 1 – i) & (xm + 1 – i ≠ yn + 1 – i ⇒ zm + 1 – i = ε).
Function γ(x, y) establishes a positional correspon-
dence between coinciding symbols of x and y when
counting positions from right to left.

5.1. Number of Common L-Embeddings
Theorem 4. L0(x, y) = L0(x[m – 1], y[n – 1])) if

xm ≠ yn,
L0(x, y) = 2L0(x[m – 1], y[n – 1]) if xm = yn.
Proof.
We denote L = L(x) ∩ L(y) and L–1 = L(x[m – 1]) ∩

L(y[n – 1]). If xm ≠ yn, then L-embedding u ∈ L–1 cor-
responds to one L-embedding uε ∈ L. Hence, L0(x, y) =
|L| = |L–1| = L0(x[m – 1], y[n – 1])). If xm = yn, then
L-embedding u ∈ L–1 corresponds to two L-embeddings
uε ∈ L and uxm ∈ L. Hence, L0(x, y) = |L| = 2|L–1| =
2L0(x[m – 1], y[n – 1])).

□
Theorem 4 defines an algorithm for evaluating

L0(x, y). For m ≤ n, the number of algorithm steps is
O(m), which is determined by the number of functions
of form L0(x[m – i], y[n – i]), where i ∈ 0..m. At each
step, the computations have complexity O(1). Thus,
the complexity of the algorithm is O(m).

Theorem 5. L0(x, y) = 2|μγ(x, y)|.
Proof.
Theorem 4 implies that, when adding one symbol

to both sequences on the right, the number of com-
mon L-embeddings doubles if the same symbols are
added; otherwise, it does not change. With |L(x) ∩
L(())| = |L(()) ∩ L(y)| = |ε| = 1 and |μγ(x, y)| being
equal to the number of coinciding symbols in the same
positions of x and y from right to left, we have L0(x, y) =
|L(x) ∩ L(y)| = 2|μγ(x, y)|, which was to be proved.

□

v v
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Theorem 5 defines an algorithm for evaluating
L0(x, y). The complexity of the algorithm corresponds
to the complexity of evaluating μγ(x, y), which is obvi-
ously O(m) for m ≤ n, plus the complexity of raising 2
to power |μγ(x, y)|, which is also O(m). Thus, the com-
plexity of the algorithm is O(m).

5.2. Sum of μ-Lengths of Common L-Embeddings
Theorem 6. L1(x, y) = L1(x[m – 1], y[n – 1])) if

xm ≠ yn,
L1(x, y) = 2L1(x[m – 1], y[n – 1] + L0(x[m – 1],

y[n – 1]) if xm = yn.
Proof.
We denote L = L(x) ∩ L(y) and L–1 = L(x[m – 1]) ∩

L(y[n – 1]). If xm ≠ yn, then L-embedding u ∈ L–1 cor-
responds to one L-embedding uε ∈ L of the same
μ-length. Hence, L1(x, y) = Σ {|μ(u)| : u ∈ L} = Σ
{|μ(u)| : u ∈ L–1} = L1(x[m – 1], y[n – 1])). If xm = yn,
then L-embedding u ∈ L–1 corresponds to two L-
embeddings: uε ∈ L of the same μ-length and uxm ∈ L
with a μ-length greater by 1. Hence, L1(x, y) = Σ {|μ(u)| :
u ∈ L} = Σ {|μ(u)| : u ∈ L–1} + (Σ {|μ(u)| : u ∈ L–1} +
L0(x[m–1], y[n–1])) = 2Σ {|μ(u)| : u ∈ L–1} + L0(x[m –
1], y[n – 1]) = 2L1(x[m – 1], y[n – 1] + L0(x[m – 1],
y[n – 1]).

□
Theorem 6 defines an algorithm for evaluating

L1(x, y); its complexity obviously does not exceed by
an order of magnitude the complexity of the algorithm
for evaluating L0(x, y), i.e., it is O(m).

Theorem 7. L1(x, y) = 1*  + 2*  + … + l*
(A001787), where l = |μγ(x, y)|.

Proof.
The statement of the theorem follows directly from

the fact that the number of common L-embeddings of
μ-length i is .

□
Theorem 7 defines an algorithm for evaluating

L1(x, y). The complexity of the algorithm is equal to
the complexity of evaluating μγ(x, y), which is obvi-
ously O(m) for m ≤ n, plus the complexity of calculat-
ing factorials i! for i ∈ 0..l, which is O(m), plus the
complexity of adding l numbers, which is O(m). Thus,
the complexity of the algorithm is O(m).

5.3. Sum of the Minimum Numbers and Sum of Products 
of the Numbers of E-Embeddings

in Common A-Embeddings
Theorem 8. L2(x, y) = L3(x, y) = L0(x, y).
Proof.
The statement of the theorem follows directly from

the fact that L-embedding u ∈ L(x) has exactly one
E-embedding  such that λ( ) = u: L2(x, y) =
Σ{min{|l(u, x)|, |l(u, y)|} : u ∈ L(x) ∩ L(y)} = Σ{min{1,

1Cl
2Cl

1Cl

μγ| ( , )|Ci
x y

v v
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1} : u ∈ L(x) ∩ L(y)} = |L(x) ∩ L(y)| = L0(x, y); L3(x,
y) = |L(x, y)| = |∪ {l(u, x) × l(u, y) : u ∈ L(x) ∩ L(y)}| =
|L(x) ∩ L(y)| = L0(x, y).

□
Theorem 8 defines an algorithm for evaluating

L2(x, y) and L3(x, y) that has the same complexity as
the algorithm for evaluating L0(x, y), i.e., O(m) for m ≤ n.

5.4. Similarity Function Based 
on the Longest Common L-Embedding

Theorem 9.
lcL(x, y) = lcL(x[m – 1], y[n – 1]) + 1 if xm = yn;
lcL(x, y) = lcL(x[m – 1], y[n – 1]) if xm ≠ yn.
Proof. Function γ(x, y) establishes a positional cor-

respondence between coinciding symbols of x and y
when counting positions from right to left. Hence,
lcL(x, y) = |μγ(x, y)|, which directly implies the state-
ment of the theorem.

□
Theorem 9 defines an algorithm for evaluating

function L4(x, y) = lcL(x, y) that has complexity O(m)
for m ≤ n.

6. R-EMBEDDINGS
Like L-embedding, R-embedding u ∈ R(x) has

only one E-embedding  such that ρ( ) = u. Common
R-embedding u ∈ R(x) ∩ R(y) has a pair of E-embed-
dings in x and y that differ only in the postfix of empty
symbols. That is why set r(u, x) is a singleton, {rl(u, x)} =
{rr(u, x)} = r(u, x) and R(x, y) = Rl(x, y) = Rr(x, y).

By δ(x, y), we denote a sequence z of length m
(recall that |x| = m ≤ n = |y|) that coincides with x and y
in those positions (from left to right) in which x and y
coincide, as well as has empty symbols in the other
positions: |z| = m and ∀ i ∈ 1..m (xi = yi ⇒ zi = xi) &
(xi ≠ yi ⇒ zi = ε). Function δ(x, y) establishes a posi-
tional correspondence between coinciding symbols of
x and y when counting positions from left to right.

6.1. Number of Common R-Embeddings
Theorem 10. R0(x, y) = R0(x[2..m], y[2..n])) if x1 ≠ y1,
R0(x, y) = 2R0(x[2..m], y[2..n]) if x1 = y1.
Proof.
We denote R = R(x) ∩ R(y) and R–1 = R(x[2..m]) ∩

R(y[2..n]). If x1 ≠ y1, then R-embedding u ∈ R–1 cor-
responds to one R-embedding εu ∈ R. Hence, R0(x, y) =
|R| = |R–1| = R0(x[2..m], y[2..n])). If x1 = y1, then
R-embedding u ∈ R–1 corresponds to two R-embed-
dings εu ∈ R and x1u. Hence, R0(x, y) = |R| = 2|R–1| =
2R0(x[2..m], y[2..n])).

□

v v
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Theorem 10 defines an algorithm for evaluating
R0(x, y). For m ≤ n, the number of algorithm steps is
O(m), which is determined by the number of functions
of form R0(x[i..m], y[i..n]), where i ∈ 0..m. At each
step, the computations have complexity O(1). Thus,
the complexity of the algorithm is O(m).

Theorem 11. R0(x, y) = 2|μδ(x, y)|.
Proof.
Theorem 10 implies that, when adding one symbol

to both sequences on the left, the number of common
R-embeddings doubles if the same symbols are added;
otherwise, it does not change. With |R(x) ∩ R(())| =
|R(()) ∩ R(y)| = |ε| = 1 and |μδ(x, y)| being equal to the
number of coinciding symbols in the same positions of
x and y from left to right, we have R0(x, y) = |R(x) ∩
R(y)| = 2|μδ(x, y)|, which was to be proved.

□
Theorem 11 defines an algorithm for evaluating

R0(x, y). The complexity of the algorithm corresponds
to the complexity of evaluating μδ(x, y), which is obvi-
ously O(m) for m ≤ n, plus the complexity of raising 2
to power |μδ(x, y)|, which is also O(m). Thus, the com-
plexity of the algorithm is O(m).

6.2. Sum of μ-Lengths of Common R-Embeddings
Theorem 12. R1(x, y) = R1(x[2..m], y[2..n])) if x1 ≠ y1,
R1(x, y) = 2R1(x[2..m], y[2..n] + R0(x[2..m],

y[2..n]) if x1 = y1.
Proof.
We denote R = R(x) ∩ R(y) and R–1 = R(x[2..m]) ∩

R(y[2..n]). If x1 ≠ y1, then R-embedding u ∈ R–1 cor-
responds to one R-embedding εu ∈ R of the same
μ-length. Hence, R1(x, y) = Σ{|μ(u)| : u ∈ R} = Σ{|μ(u)| :
u ∈ R–1} = R1(x[2..m], y[2..n])). If x1 = y1, then
R-embedding u ∈ R–1 corresponds to two R-embed-
dings: εu ∈ R of the same μ-length and x1u ∈ R with a
μ-length greater by 1. Hence, R1(x, y) = Σ{|μ(u)| : u ∈
R} = Σ{|μ(u)| : u ∈ R–1} + (Σ{|μ(u)| : u ∈ R–1} +
R0(x[2..m], y[2..n])) = 2Σ{|μ(u)| : u ∈ R–1} +
R0(x[2..m], y[2..n]) = 2R1(x[2..m], y[2..n] +
R0(x[2..m], y[2..n]).

□
Theorem 12 defines an algorithm for evaluating

R1(x, y); its complexity obviously does not exceed by
an order of magnitude the complexity of the algorithm
for evaluating R0(x, y); i.e., it is O(m) for m ≤ n.

Theorem 13. R1(x, y) = 1*  + 2*  + … + r*
(A001787), where r = |μδ(x, y)|.

Proof.
The statement of the theorem follows directly from

the fact that the number of common R-embeddings of
μ-length i is .

□
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Theorem 13 defines an algorithm for evaluating
R1(x, y). The complexity of the algorithm is equal to
the complexity of evaluating μδ(x, y), which is obvi-
ously O(m) for m ≤ n, plus the complexity of calculat-
ing factorials i! for i ∈ 0..r, which is O(m), plus the
complexity of adding r numbers, which is O(m). Thus,
the complexity of the algorithm is O(m).

6.3. Sum of the Minimum Numbers and Sum of Products 
of the Numbers of E-Embeddings

in Common R-Embeddings
Theorem 14. R2(x, y) = R3(x, y) = R0(x, y).
Proof.
The statement of the theorem follows directly from

the fact that R-embedding u ∈ R(x) has exactly one
E-embedding  such that ρ( ) = u: R2(x, y) =
Σ{min{|r(u, x)|, |r(u, y)|} : u ∈ R(x) ∩ R(y)} = Σ{min{1,
1} : u ∈ R(x) ∩ R(y)} = |R(x) ∩ R(y)| = R0(x, y); R3(x,
y) = |R(x, y)| = |∪ {r(u, x) × r(u, y) : u ∈ R(x) ∩ R(y)}| =
|R(x) ∩ R(y)| = R0(x, y).

□
Theorem 14 defines an algorithm for evaluating

R2(x, y) and R3(x, y) that has the same complexity as
the algorithm for evaluating R0(x, y), i.e., O(m) for m ≤ n.

6.4. Similarity Function Based 
on the Longest Common R-Embedding

Theorem 15.
lcR(x, y) = lcR(x[2..m], y[2..n]) + 1 if x1 = y1;
lcR(x, y) = lcR(x[2..m], y[2..n]) if x1 ≠ y1.
Proof. Function δ(x, y) establishes a positional

correspondence between coinciding symbols of x and
y when counting positions from left to right. Hence,
lcR(x, y) = |μδ(x, y)|, which directly implies the state-
ment of the theorem.

□
Theorem 15 defines an algorithm for evaluating

function R4(x, y) = lcR(x, y) that has complexity O(m)
for m ≤ n.

7. O-EMBEDDINGS
7.1. Number of Common O-Embeddings

For xm = yn = h, we denote the sets of indices that
determine the position of symbol h in x and y by I =
{i ∈ 1..m : xi = h} and J = {j ∈ 1..n : yj = h}, respectively.

For i ∈ I and j ∈ J, we denote Li,j = L(x[i – 1]) ∩
L(y[j – 1]).

Denote also K = (I × J)\{(m, n)} and Lh(x, y) =
Lm,n\∪ {Li,j : (i, j)∈ K}.

For i ∈ I and j ∈ J, ui,j denotes the maximum com-
mon L-embedding in x[i – 1] and y[j – 1]: ui,j = λ( ),
where  is a common E-embedding in x[i – 1] and

v v

,i jv

,i jv
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y[j – 1], which is defined by the following condition:
∀ t = 1..min{i, j} – 1 (xi – t = yi – t ⇒ (i – t) = xi – t)
& (xi – t ≠ yi – t ⇒ (i – t) = ε). The set of all common
L-embeddings in x[i – 1] and y[j – 1] is λE(ui,j); i.e., it
is obtained from ui,j by all possible replacements of cer-
tain symbols with empty symbols, followed by the
removal of the prefix of empty symbols.

Lemma 1. Suppose that xm = yn = h. Evaluation of
|Lh(x, y)| is equivalent to calculating the number of
terms in the PDNF of the conjunction of disjunctions
of variables without negations, where the number of
variables is equal to the number of non-empty symbols
in the maximum common L-embedding um,n in x[m – 1]
and y[n – 1].

Proof.
Lh(x, y) = Lm,n\∪{Li,j : (i, j)∈ K} = Lm,n\∪{Lm,n ∩

Li,j : (i, j)∈ K}. To obtain Lh(x, y), we need to remove
set Lm,n ∩ Li,j from Lm,n for each (i, j)∈ K.

Let us define the intersection  of embeddings
um,n and ui,j that have length |um,n| and coincide with
um,n and ui,j in those positions (from right to left) in
which they mutually coincide, with the other positions
containing empty symbols: | | = |um,n| and ∀ t =

1..|um,n| (t > |ui,j| ⇒ (|um,n| – t) = ε) & (t ≤ |ui,j| &

um,n(|um,n| – t) = ui,j(|ui,j| – t) ⇒ (|um,n| – t) = um,n(|um,n| –

t)) & (t ≤ |ui,j| & um,n(|um,n| – t) ≠ ui,j(|ui,j| – t) ⇒ (|um,n| –

t) = ε). Obviously,  = um,n.
The symbols in the positions where um,n contains

empty symbols are removed from , and the result is

denoted by wi,j: if  = u1h1u2h2…ukhk – 1uk, um,n =
 for both i ∈ 1..k |ui| = | | and  ∈ H*,

then wi,j = u1u2…uk – 1uk. Obviously, wm,n = μ(um,n).
All wi,j have the same length |wm, n|, equal to the

number of non-empty symbols in um, n. Each L-embed-
ding from Lm,n ∩ Li,j is in one-to-one correspondence
with an E-embedding in wi, j, with the number of these
embeddings being 2k, where k = |μ(wi, j)| is the number
of non-empty symbols in wi, j.

Each t ∈ 1..|wm,n| is associated with a Boolean vari-
able αt, which means that there can be a non-empty
symbol in position t. Then, E-embeddings in wi,j are
given by a Boolean function Fi,j = &{¬αt : t ∈ 1..|wm,n| &
wi,j(t) = ε}, which is true on only those sets α1, …, in
which αt = false for all indices t by which an empty
symbol is found in wi,j and, therefore, in any E-embed-
ding in wi,j. If there is a non-empty symbol by index t
in wi,j, then some E-embeddings in wi,j contain an
empty symbol in this position, while the others con-
tain non-empty symbols, which means that function

,i jv

,i jv

∧
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,i ju
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∧
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Fi,j does not depend on αt. Obviously, Fm,n = &∅ =
true.

Difference Lm,n\∪ {Lm,n ∩ Li,j : (i, j)∈ K} is given by
a Boolean function F = Fm,n\∨ {Fi,j : (i, j)∈ K} = &
{¬Fi,j : (i, j)∈ K}, and ¬Fi,j = ∨{αt : t ∈ 1..|wm,n| & wi,j(t) =
ε}. Thus, F is a conjunction of disjunctions of variables
without negations, and |Lh(x, y)| is equal to the number
of terms in the PDNF of function F.

□
Theorem 16.
O0(x, y) = O0(x[m – 1], y) + O0(x, y[n – 1]) –

O0(x[m – 1], y[n – 1]) if xm ≠ yn.
O0(x, y) = O0(x[m – 1], y) + O0(x, y[n – 1]) –

O0(x[m – 1], y[n – 1]) + Lh(x, y]) if xm = yn.
Proof.
Let us denote the following sets of pairs of E-

embeddings:
E = Or(x, y),
E00 = Or(x[m – 1], y[n – 1])(ε, ε) is the pair of last

elements (ε, ε),
E01 = (Or(x[m – 1], y])(ε, ()))\E00 is the pair of last

elements (ε, yn),
E10 = (Or(x, y[n-1])((), ε))\E00 is the pair of last

elements (xm, ε),
E11 = E\(E00 ∪ E01 ∪ E10) is the pair of last elements

(xm, yn), since E00 ∪ E01 ∪ E10 contain all pairs of E-
embeddings of common O-embeddings in which the
pair of last elements contains ε.

Obviously, E = E00 ∪ E01 ∪ E10 ∪ E11. Pairs of last
elements of pairs of E-embeddings from different sets
E00, E01, E10, and E11 are different, which is why these
sets are pairwise disjoint. Therefore, |E| = |E00| + |E01| +
|E10| + |E11|, |E00 ∪ E01| = |E00| + |E01|, and |E00 ∪ E10| =
|E00| + |E10|.

Since O0(x, y) = |O(x) ∩ O(y)| = |Or(x, y)| and L0(x,
y) = L3(x, y) = |L(x, y)| for any x and y, the statement
of the theorem can be rewritten as follows:

|E| = (|E00| + |E01|) + (|E00| + |E10|) – |E00| = |E00| +
|E01| + |E10| if xm ≠ yn,

|E| = (|E00| + |E01|) + (|E00| + |E10|) – |E00| + |Lh(x, y)| =
|E00| + |E01| + |E10| + |Lh(x, y)| if xm = yn.

Let us consider the case where xm ≠ yn. In this case,
E11 = ∅; this implies that |E11| = 0 and |E00| = |E00| + |E01| +
|E10|, which was to be proved in this case.

Let us consider the case where xm = yn = h. In this
case, each pair of E-embeddings from E11 has form

( , ), where ( ,
) ∈ Lh(x, y). More specifically, when pass-

ing from x[m – 1] and y[n – 1] to x and y, this pair is
formed by adding symbol h to the right of the pair of
E-embeddings of common L-embeddings in x[m –1]
and y[n –1] that did not exist before, i.e., they are not

− −−ε ε| 1|m k khv

v
− −−ε ε| 1|n k khv

v
− − −ε ε1| |m k kv

v

− − −ε ε1| |n k kv

v
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pairs of E-embeddings of common L-embeddings in
x[i – 1] and y[j – 1], where xi = yj = h and i < m or j < n.

We say that pair ( , ) corre-
sponds to pair ( , ). This corre-
spondence is obviously a bijection of sets E11 and Lh(x,
y). Therefore, |E11| = |Lh(x, y)|. Hence, |E| = |E00| + |E01| +
|E10| + |E11| = |E00| + |E01| + |E10| + |Lh(x, y)|, which was
to be proved.

□
Theorem 16 defines an algorithm for evaluating

O0(x, y). The number of algorithm steps is O(mn),
which is determined by the number of functions of
form O0(x[m – i], y[n – j]), where i ∈ 0..m and j ∈ 0..n,
provided that each function is evaluated at most once
(after which its value is saved). At each step, the com-
putations have complexity O(1). Thus, the complexity
of the algorithm is O(mn)*O(Lh(x, y)), where O(Lh(x,
y)) is the complexity of evaluating function |Lh(x, y)|.

Lemma 2. Suppose that we have k not necessarily
distinct sets a(s), s ∈ 1..k. For S ⊆ 1..k, S ≠ ∅, the
intersection of sets a(s) whose indices run over set S is
denoted by c(S) = ∩{a(s) : s ∈ S}, and the sum of the
numbers of subsets in set c(S) over all S for which |S| = l is
denoted by E(l) = Σ{2|c(S)| : S ⊆ 1..k & |S| = l}. Then, the
number of distinct sets embedded in at least one of the
sets a(s), s ∈ 1..k, is equal to the alternating sum E(1) –
E(2) + E(3) – E(4) … (–1)k + 1E(k), and the sum F of
sizes of these sets incremented by 1 is equal to the alter-
nating sum F(1) – F(2) + F(3) – F(4) … (–1)k + 1F(k),
where F(l) = Σ{(|c(S)| + 2) 2|c(S)| – 1 : S ⊆ 1..k & |S| = l}.
These alternating sums can be calculated in O(2k)
time, provided that intersections of two sets (as well as
integer arithmetic operations) can be performed in
O(1) time.

Proof.
Let us denote the number of distinct sets embedded

in at least one of sets a(s), s ∈ 1..k, by E(a(1), …, a(k)),
and the sum of their sizes, incremented by 1, by
F(a(1), …, a(k)).

We prove the theorem by induction on k. For k = 1,
there is a single set S ⊆ 1..1, S ≠ ∅, namely, S = {1},
and c({1}) = ∩{a(s) : s ∈ {1}} = a(1). The number of
distinct subsets of set a(1) is 2|a(1)| and E(a(1)) = E(1) =
2|a(1)|, while the sum of their lengths, incremented by 1,
is  + 
(A001792), and F(a(1)) = F(1) = (r + 2)2r – 1, where
r = |a(1)|.

Suppose that the statement holds for k. Let us
prove it for k + 1.

The number of distinct sets embedded in at least one
of the sets a(s), where s ∈ 1..k + 1, is equal to the number
of distinct sets embedded in at least one of the sets a(s),
where s ∈ 1..k, i.e., E(a(1), …, a(k)), plus the number of
distinct sets embedded in a(k + 1), i.e., 2|a(k + 1)|, except
those embedded in the intersection between a(k + 1)

− −−ε ε| 1|m k khv

v
− −−ε ε| 1|n k khv

v
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v
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and the union of sets a(1), …, a(k), the number of
which is E(a(k + 1) ∩ a(1), …, a(k + 1) ∩ a(k)).

Let us denote Ek + 1 = E(a(1), …, a(k + 1)), Ek =

E(a(1), …, a(k)), and  = E(a(k + 1) ∩ a(1), …,
a(k + 1) ∩ a(k)). We have Ek + 1 = Ek + 2|a(k + 1)| – .

Let us now consider S ⊆ 1..k + 1. Suppose that |S| = 1;
then, S = {i}, i ∈ 1..k + 1. For i ∈ 1..k, term 2|сS)| = 2|a(i)|

occurs once in sum Ek with sign “+”; as a result, for i ∈
1..k + 1, term 2|сS)| = 2|a(i)| occurs once in sum Ek + 1 with
the same sign. Suppose that |S| > 1. If k + 1 ∉ S, then
term 2|c(S)| occurs once in sum Ek with sign “(–1)|S| + 1”;
as a result, for i ∈ 1..k + 1, term 2|c(S)| occurs once in
sum Ek + 1 with the same sign. If k + 1 ∈ S, then c(S) =
{a(i1) ∩ … ∩ a(i|S| – 1) ∩ a(k + 1)} = {(a(k + 1) ∩ a(i1)) ∩
… ∩ (a(k + 1) ∩ a(i|S| – 1))}. Therefore, term 2|c(S)|

occurs once in sum  with sign “(–1)|S|”; however,
with sum  being subtracted, term 2|c(S)| occurs once
in sum Ek + 1 with sign “(–1)|S| + 1”.

Similarly, the sum of lengths (incremented by 1) of
distinct sets embedded in at least one of sets a(s), where
s ∈ 1..k + 1, is equal to the sum of lengths (incre-
mented by 1) of distinct sets embedded in at least one
of sets a(s), where s ∈ 1..k, i.e., F(a(1), …, a(k)), plus
the sum of lengths (incremented by 1) of distinct sets
embedded in a(k + 1), i.e., (|a(k + 1)| + 2)2|a(k + 1)| – 1,
except those embedded in the intersection between
a(k + 1) and the union of sets a(1), …, a(k), the sum
of lengths (incremented by 1) of which is F(a(k + 1) ∩
a(1), …, a(k + 1) ∩ a(k)). We denote Fk + 1 = F(a(1), …,
a(k + 1)), Fk = F(a(1), …, a(k)), and = F(a(k + 1) ∩
a(1), …, a(k + 1) ∩ a(k)). We have Fk + 1 = Fk + (|a(k +
1)| + 2)2|a(k + 1)| – 1 – . Let us consider S ⊆ 1..k + 1.
Suppose that |S| = 1; then, S = {i}, i ∈ 1..k + 1. For i ∈
1..k, term (|c(S)| + 2)2|c(S)| – 1 = (|a(i)| + 2)2|a(i)| – 1 occurs
once in sum Fk with sign “+”; as a result, for i ∈ 1..k + 1,
term (|c(S)| + 2)2|c(S)| – 1 = (|a(i)| + 2)2|a(i)| – 1 occurs
once in sum Fk + 1 with the same sign. Suppose that
|S| > 1. If k + 1 ∉ S, then term (|c(S)| + 2)2|c(S)| – 1 occurs
once in sum Fk with sign “(–1)|S| + 1”; as a result, for
i ∈ 1..k + 1, term (|c(S)| + 2)2|c(S)| – 1 occurs once in sum
Fk + 1 with the same sign. If k + 1 ∈ S, then term (|c(S)| +
2)2|c(S)| – 1 occurs once in sum  with sign “(–1)|S|”;
however, with  being subtracted, term (|c(S)| +
2)2|c(S)| – 1 occurs once in sum Fk + 1 with sign “(–1)|S| + 1”.

The statement is proved.
The number of (not necessarily distinct) sets c(S) is

equal to the number of non-empty subsets S of set 1..k,
which is equal to 2k – 1. That is why the complexity of
evaluating E is O(2k), provided that intersections of
two sets (as well as integer arithmetic operations) can
be performed in O(1) time.

□
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Let us denote the set of indices of sequence x by
which symbol h is found: Kx(h) = {i ∈ 1..m : x(i) = h}.
For i ∈ Kx(h), the set of pairs (symbol in x, symbol’s
position in x relative to position i), except for pair (h,
0), is denoted by Px(i) = {(x(t), t – i) : t ∈ 1..m & t ≠ i}.
Suppose that symbol h occurs |Kx(h)| > 0 times in x and
|Ky(h)| > 0 times in y. We denote k = |Kx(h)|*|Ky(h)|. For
i ∈ Kx(h) and j ∈ Ky(h), for brevity, we denote P(i, j) =
Px(i) ∩ Py(j). For S ⊆ Kx(h) × Ky(h), S ≠ ∅, we denote
c(S) = ∩{P(i, j) : (i, j) ∈ S}.

Theorem 17. The number of distinct common O-
embeddings in x and y that contain symbol h is equal
to the alternating sum E = E(1) – E(2) + E(3) – E(4)
… (–1)k + 1E(k), where term E(l) is a sum of the num-
bers of all subsets of set c(S) over all S of size l, |S| = l:
E(l) = Σ{2|c(S)| : S ⊆ 1..k & |S| = l}. The complexity of
the computations is O(n2k).

Proof.
Let us consider common O-embedding u and a pair

of its E-embeddings (x) ∈ o(u, x) and (y) ∈ o(u, y)
such that (x)i = xi = h and (y)j = yj = h. It is in one-
to-one correspondence with a subset of the set of pairs
P(i, j). We need to calculate the number of distinct sets
embedded in at least one of sets P(i, j), where i ∈ Kx(h)
and j ∈ Ky(h). The number of these sets of pairs P(i, j)
is k. By Lemma 2, it is equal to E = E(1) – E(2) + E(3) –
E(4) … (–1)k + 1E(k), where E(l) = Σ{2|c(S)| : S ⊆ 1..k &
|S| = l}, l = 1..k, is the sum of the numbers of all subsets
of set c(S) over all S ⊆ Kx(h) × Ky(h) of size l, i.e., |S| =
l, and c(S) = ∩{P(i, j) : (i, j) ∈ S}.

We iterate over sequence x of length m and calcu-
late Kx(h). While searching through Kx(h), we calcu-
late sets Px(i). Calculating set Px(i) requires searching
through sequence x of length m. Thus, all sets Px(i), i ∈
Kx(h), are calculated in O(m|Kx(h)|). Similarly, all sets
Py(j), j ∈ Ky(h), are calculated in O(n|Kx(h)|). We can
assume that set Px(i) = {(x(t), t – i) : t ∈ 1..m & t ≠ i} is
linearly arranged in ascending order with respect to
index t – i; the size of this set is m – 1. Similarly for set
Py(j), with the size of this set being n – 1. Then, to con-
struct intersection P(i, j) = Px(i) ∩ Py(j), we need to
iterate over these sets, i.e., we need time O(n + m),
with all sets P(i, j), i ∈ Kx(h) and j ∈ Ky(h), being cal-
culated in O(k(n + m)). Similarly, each intersection of
sets P(i, j) is constructed in O(n + m) time. The com-
plexity of calculating sum E by Lemma 2 is O(2k);
however, provided that the intersection of two sets is
constructed in O(1) time, in this case, O((n + m)2k)
time is required. The overall complexity is O(m) +
O(n) + O(m|Kx(h)|) + O(n|Ky(h)|) + O(k(n + m)) +
O((n + m)2k) = O((n + m)2k), which corresponds to
O(n2k) for m ≤ n.

□
Theorem 17 defines the following algorithm for

evaluating O0(x, y).

v v

v v
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1. SUMMA = 0.
2. Search through sequence x to find non-empty

symbol h in x.
2.1. If it is not found, then the algorithm termi-

nates.
2.2. If it is found, then search for symbol h in y.
2.2.1. If it is not found, then replace h in x with an

empty symbol and go to Step 2.
2.2.2. If it is found, then do the following.
2.2.2.1. Calculate set Kx(h) of indices in x by which

h is found, as well as set Ky(h) of indices in y by which
h is found.

2.2.2.2. For each pair (i, j) ∈ Kx(h) × Ky(h), con-
struct a set of pairs P(i, j).

2.2.2.3. For each set of pairs of indices S ⊆ Kx(h) ×
Ky(h), S ≠ ∅, construct intersection c(S) = ∩ {P(i, j) :
(i, j) ∈ S}.

2.2.2.4. Calculate E = E(1) – E(2) + E(3) – E(4) …
(–1)k + 1E(k).

2.2.2.5. SUMMA = SUMMA + E.
2.2.2.6. Replace h in x and y with empty symbols

and go to Step 2.

7.2. Sum of μ-Lengths of Common O-Embeddings
Theorem 18. The sum of μ-lengths of distinct com-

mon O-embeddings in x and y that contain symbol h is
equal to the alternating sum F = F(1) – F(2) + F(3) –
F(4) … (–1)k+1F(k), where F(l) = Σ{(|c(S)| + 2) 2|c(S)| – 1

: S ⊆ 1..k & |S| = l} is the sum of cardinalities of all sub-
sets of all sets c(S) for |S| = l. The complexity of the
computations is O(n2k).

Proof is similar to that of Theorem 17.
□

Theorem 18 defines the following algorithm for
evaluating O1(x, y).

1. Search through sequence x to find non-empty
symbol h in x.

1.1. If it is not found, then the algorithm termi-
nates.

1.2. If it is found, then search for symbol h in y.
1.2.1. If it is not found, then replace h in x with an

empty symbol and go to Step 2.
1.2.2. If it is found, then do the following.
1.2.2.1. Calculate set Kx(h) of indices in x by which

h is found, as well as set Ky(h) of indices in y by which
h is found.

1.2.2.2. For each pair (i, j) ∈ Kx(h) × Ky(h), con-
struct a set of pairs P(i, j).

1.2.2.3. For each set of pairs of indices S ⊆ Kx(h) ×
Ky(h), S ≠ ∅, construct intersection c(S) = ∩ {P(i, j) :
(i, j) ∈ S}.

1.2.2.4. Calculate F = F(1) – F(2) + F(3) – F(4) …
(–1)k + 1F(k).
PROGRAMMING A
1.2.2.5. SUMMA = SUMMA + F.
1.2.2.6. Replace h in x and y with empty symbols

and go to Step 2.

7.3. Sum of the Minimum Numbers of E-Embeddings 
in Common O-Embeddings

Theorem 19. The sum of the minimum numbers of
E-embeddings of common O-embeddings in x and y
that contain symbol h is Σ{min{|I|, |J|} * 2|A(I, J)| – 1 : I ⊆
Kx(h) & I ≠ ∅ & J ⊆ Ky(h) & J ≠ ∅}, where A(I, J) =
(∩{P(i, j) : i ∈ I, j ∈ J})\(∪{P(i, j): i ∈ Kx(h)\I ∨ j ∈
Ky(h)\J}).

The complexity of the computations is O(n2k).
Proof. Set A(I, J) represents all common O-embed-

dings that contain symbol h and have E-embeddings in
x, represented by set I and E-embeddings in y, repre-
sented by set J. For each of these O-embeddings, the
minimum number of their E-embeddings in x and y is
min{|I|, |J|}. The number of these O-embeddings is 2|A(I, J)|,
which is why the sum of the minimum numbers of
E-embeddings in these common O-embeddings is
min{|I|, |J|} * 2|A(I, J)|. By summing over all pairs of sets
I ⊆ Kx(h), I ≠ ∅, and J ⊆ Ky(h) , J ≠ ∅, we obtain the
desired sum of the minimum numbers of E-embed-
dings of common O-embeddings in x and y that con-
tain symbol h.

When calculating this sum, the operations of addi-
tion, multiplication, powering 2, and calculating the
minimum of two numbers are performed O(2k) times.
To evaluate all A(I, J), the operations for calculating
the difference of two sets, intersecting two sets, and
uniting two sets are performed O(2k) times; each of
these operations is performed in O(n + m) time.

We search through sequence x of length m and cal-
culate Kx(h). While searching through Ky(h), we calcu-
late sets Px(i). Calculating set Px(i) requires searching
through sequence x of length m. Thus, all sets Px(i), i ∈
Kx(h), are calculated in O(m|Kx(h)|). Similarly, all sets
Py(j), j ∈ Ky(h), are calculated in O(n|Ky(h)|). We can
assume that set Px(i) = {(x(t), t – i) : t ∈ 1..m & t ≠ i} is
linearly arranged in the ascending order with respect
to index t – i; the size of this set is m – 1. Similarly for
set Py(j), with the size of this set being n – 1. Then, to
construct intersection P(i, j) = Px(i) ∩ Py(j), we need
to search through these sets, i.e., we need time O(n +
m), with all sets P(i, j), i ∈ Kx(h) and j ∈ Ky(h), being
calculated in O(k(n + m)) time. To calculate set A(I,
J), the operations for calculating the difference of two
sets, intersecting two sets, and uniting two sets are per-
formed in O(n + m) time, and the number of these sets
A(I, J) is O(2k). Thus, all sets A(I, J) are constructed in
O((n + m)2k) time, after which the arithmetic opera-
tions are performed O(2k) times to calculate the sum.
The overall complexity is O(k(n + m)) + O((n + m)2k)
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+ O(2k) = O((n + m)2k), which corresponds to O(n2k)
for m ≤ n.

□
Theorem 19 defines the following algorithm for

evaluating O2(x, y).
1. Search through sequence x to find non-empty

character h in x.
1.1. If it is not found, then the algorithm termi-

nates.
1.2. If it is found, then search for symbol h in y.
1.2.1. If it is not found, then replace h in x with an

empty symbol and go to Step 2.
1.2.2. If it is found, then do the following.
1.2.2.1. Calculate set Kx(h) of indices in x by which

h is found, as well as set Ky(h) of indices in y by which
h is found.

1.2.2.2. For each pair (i, j) ∈ Kx(h) × Ky(h), con-
struct a set of pairs P(i, j).

1.2.2.3. For each I ⊆ Kx(h), I ≠ ∅, and J ⊆ Ky(h),
J ≠ ∅, construct A(I, J).

1.2.2.4. Calculate M = Σ{min{|I|, |J|} * 2|A(I, J)| – 1 : I ⊆
Kx(h) & I ≠ ∅ & J ⊆ Ky(h) & J ≠ ∅}.

1.2.2.5. SUMMA = SUMMA + M.
1.2.2.6. Replace h in x and y with empty symbols

and go to Step 2.

7.4. Sum of Products of the Numbers
of E-Embeddings in Common O-Embeddings

Theorem 20. O3(x, y) = O3(x[m – 1], y) + O3(x,
y[n – 1]) – O3(x[m – 1], y[n – 1]) if xm ≠ yn;

O3(x, y) = O3(x[m – 1], y) + O3(x, y[n – 1]) –
O3(x[m – 1], y[n – 1]) + L3(x[m – 1], y[n – 1]) if xm = yn.

Proof. Let us denote the following sets of pairs of
E-embeddings:

E = O(x, y),
L00 = L(x[m – 1], y[n – 1]),
E00 = O(x[m – 1], y[n – 1])(ε, ε) is the pair of last

elements (ε, ε),
E01 = (O(x[m – 1], y])(ε, ()))\E00 is the pair of last

elements (ε, yn),
E10 = (O(x, y[n – 1])((), ε))\E00 is the pair of last

elements (xm, ε),
E11 = E\(E00 ∪ E01 ∪ E10) is the pair of last elements

(xm, yn), since E00 ∪ E01 ∪ E10 contain all pairs of
E-embeddings of common O-embeddings in which
the pair of last elements contains ε.

Obviously, E = E00 ∪ E01 ∪ E10 ∪ E11. Pairs of last
elements of pairs of E-embeddings from different sets
E00, E01, E10, and E11 are different, which is why these
sets are pairwise disjoint. Therefore, |E| = |E00| + |E01| +
|E10| + |E11|, |E00 ∪ E01| = |E00| + |E01|, and |E00 ∪ E10| =
|E00| + |E10|.
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In this notation, the statement of the theorem has
the following form:

|E| = (|E00| + |E01|) + (|E00| + |E10|) – |E00| = |E00| +
|E01| + |E10| if xm ≠ yn,

|E| = (|E00| + |E01|) + (|E00| + |E10|) – |E00| + |L00| =
|E00| + |E01| + |E10| + |L00| if xm = yn.

Let us consider the case where xm ≠ yn. In this case,
E11 = ∅; this implies that |E11| = 0 and |E00| = |E00| + |E01| +
|E10|, which was to be proved in this case.

Let us consider the case where xm = yn = h. Each pair

of E-embeddings from E11 has form ( ,

), where ( , ) ∈ L00.

We say that pair ( , ) corre-
sponds to pair ( , ). This corre-
spondence is obviously a bijection of sets E11 and L00.
Therefore, |E11| = |L00|. Hence, |E| = |E00| + |E01| + |E10| +
|E11| = |E00| + |E01| + |E10| + |L00|, which was to be
proved.

□
Theorem 20 defines an algorithm for evaluating

O3(x, y). The number of algorithm steps is O(mn),
which is determined by the number of functions of
form O3(x[m – i], y[n – j]) and L3(x[m – i], y[n – i]),
where i ∈ 0..m and j ∈ 0..n, provided that each func-
tion is evaluated at most once (after which its value is
saved). At each step, the computations have complex-
ity O(1). Thus, the complexity of the algorithm is
O(mn).

7.5. Similarity Function Based 
on the Longest Common O-Embedding

Theorem 21.
lcO(x, y) = max{lcL(x[m – 1], y[n – 1]) + 1,

lcO(x[m – 1], y[n – 1])} if xm = yn:
lcO(x, y) = max{lcO(x, y[n – 1]), lcO(x[m – 1], y)}

if xm ≠ yn.
Proof. If xm = yn, then the right-most E-embed-

dings of a common O-embedding can have either (1)
symbol xm = yn or (2) an empty symbol in position m in
x and in position n in y. In case 1, the longest common
O-embedding has form uxm, where u is a common
L-embedding of prefixes of x[m – 1] and y[n – 1]; i.e.,
its μ-length exceeds by 1 that of the longest common
L-embedding of prefixes of x[m – 1] and y[n – 1].
In case 2, the longest common O-embedding is the
longest O-embedding of prefixes of x[m – 1] and y[n – 1]
that has the same μ-length. This implies the statement
of the theorem for xm = yn.

For xm ≠ yn, the right-most E-embeddings of a
common O-embedding have an empty symbol either
(1) in position m in x or (2) in position n in y. In case 1,
the longest common O-embedding is the longest
O-embedding of prefixes of x[m – 1] and sequence y

− − −ε ε| 1|m k khv

v

− − −ε ε| 1|n k khv

v
− − −ε ε1| |m k kv

v
− − −ε ε1| |n k kv

v

− − −ε ε| 1|m k khv

v
− − −ε ε| 1|n k khv

v

− − −ε ε1| |m k kv

v
− − −ε ε1| |n k kv

v
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that has the same μ-length. In case 2, the longest com-
mon O-embedding is the longest O-embedding of
sequence x and prefix of y[n – 1] that has the same
μ-length. This implies the statement of the theorem
for xm ≠ yn.

□
Theorem 21 defines an algorithm for evaluating

function O4(x, y) = lcO(x, y), which has complexity
O(mn).

8. CONCLUSIONS
Some of the similarity functions introduced in this

paper play an auxiliary role. For instance, L3 is used to
evaluate O3, lcL is used to evaluate lcO, while A0 is
independently important and is also used to evaluate
A1. However, there are cases where these auxiliary
functions play the main role. L-embeddings are useful
when the distance between embedded symbols is
important, as well as when the distance from the last
embedded symbol to the end of a sequence is taken
into account; R-embeddings are useful when the dis-
tance from the beginning of the sequence to the first
embedded symbol is important.

When comparing functions of different types
(regardless of the type of embedding), we can note the
following. The number of common embeddings
(function 0) is a good numerical characteristic; how-
ever, it does not take into account the length of
embeddings. For instance, sequences 11112222 and
1122111 have 9 common subsequences (including the
empty one), and the sum of their lengths is 17. The for-
mer sequence also has 9 common subsequences with
sequence 22221111; however, the sum of their lengths
is 20 because there are two long subsequences 1111 and
2222. Therefore, the sum of lengths of common
embeddings (function 1) is of independent impor-
tance.

Both these characteristics (functions 0 and 1) do
not take into account that one common embedding
can occur in one sequence many times and occur in
another sequence a few times. This is taken into
account by the sum of the numbers of pairs of occur-
rences of common embeddings (the sum of products
of the numbers of occurrences of common embed-
dings: function 3). Using the above example,
sequences 11112222 and 1122111 have 279 pairs of
occurrences of common embeddings, and sequences
11112222 and 22221111 have 139 pairs due to the fact
that, in the former pair of sequences, there are many
occurrences of common embeddings 12, 112, and 122
in both the sequences that are absent in the latter pair.

At the same time, function 3 does not satisfy the
natural axiom of direction of similarity [5], also known
as the bound by self-similarity [4]: f(x, y) ≤ min{f(x, x),
f(y, y)}. In particular, this function is strictly increasing
when the same non-empty sequence x is compared
with sequences xx, xxx, xxxx, … This f law is overcome
PROGRAMMING A
by function 4 (the sum of the minimum numbers of
occurrences of common embeddings). Unfortunately,
this function is poorly amenable to algorithmic opti-
mization, in particular, for A-embeddings, i.e., subse-
quences; we do not aware of any algorithm for it,
except exhaustive search. Partial optimization could
be carried out using an efficient algorithm for enumer-
ating common subsequences the complexity C(x, y) of
which is lower than that of exhaustive search. Since the
calculation of the number of occurrences of embed-
ding u in sequence x has complexity O(|u|*|x|) (see
Lemma 8 [3]), we would have an algorithm for evalu-
ating function 4 that has complexity C(x, y)*O(mn).
Moreover, if there were an efficient (possibly on a sub-
class of sequences) algorithm for enumerating subse-
quences of only one sequence that has complexity
C1(x, y), then we would have an algorithm for evaluat-
ing function 4 that has complexity C1(x, y)*O(mn).

Function 5, which is based on the longest common
embedding, also satisfies the direction axiom. How-
ever, it has the following disadvantage: it does not take
into account common embeddings that are not part of
the longest common embedding. In our example,
sequences 11112222 and 1122111 have the longest com-
mon subsequence 1122, which does not include subse-
quence 111; sequences 11112222 and 22221111 have
two longest common subsequences: 1111 (which does
not include all subsequences of twos) and 2222 (which
does not include all subsequences of ones).

The problem of enumerating common embeddings
is also investigated. As an example, we can mention
the work [6], which proposed an algorithm for enu-
merating maximum (rather than longest) common
subsequences, which needs polynomial time and
memory for each maximum common subsequence.
These maximum common embeddings have a useful
property: each common embedding is part of one or
several maximum embeddings. It could be possible to
propose a similarity function based on maximum
common embeddings: the number of these embed-
dings, the sum of their lengths, etc. This could be a
subject of further research.

Another direction for further research could be
similarity functions for sequences in an alphabet with
weighted symbols. An empty symbol could be assigned
a zero weight. In turn, an embedding could corre-
spond to the sum of weights of its constituent symbols
rather than to their number. A negative weight could
be a “penalty” for using this symbol in a common
embedding.
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